已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
(
是参数).
(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且,试求实数m值.
.(本小题满分13分)
P为椭圆上任意一点,
为左、右焦点,
如图所示.
(1)若的中点为
,求证:
(2)若∠,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·=0,若存在,求出P点的坐标,若不存在,试说明理由
(本小题满分12分)
学校要建一个面积为392 m2的长方形游泳池,并且在四周要修建出宽为2m和4 m的小路(如图所示)。
问游泳池的长和宽分别为多少米时,占地面积最小?并求出占地面积的最小值。
(本小题满分12分)
如图,的中点.
(1)求证:;(2)求证:
;
(本小题满分12分)
对某校高二年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率
分布直方图如下:
分组 |
频数 |
频率 |
![]() |
10 |
0.25 |
![]() |
24 |
![]() |
![]() |
![]() |
![]() |
![]() |
2 |
0.05 |
合计 |
![]() |
1 |
(1)求出表中及图中
的值;
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
.(本小题满分12分)
已知函数
(1)求函数的最大值和最小正周期;
(2)设的内角
的对边分别
且
,
,若
求
的值.