游客
题文

(本小题满分12分)如图,多面体ABCDS中,面ABCD为矩形, 
(1)求证:CD;
(2)求AD与SB所成角的余弦值;
(3)求二面角A—SB—D的余弦值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

如图,已知曲线 C 2 : x 2 2 - y 2 = 1 ,曲线 C 2 : y = x + 1 P 是平面上一点,若存在过点 P 的直线与 C 1 , C 2 都有公共点,则称 P 为" C 1 - C 2 型点".
image.png

(1)在正确证明 C 1 的左焦点是" C 1 - C 2 型点"时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线 y = k x C 2 有公共点,求证 k > 1 ,进而证明原点不是" C 1 - C 2 型点";
(3)求证:圆 x 2 + y 2 = 1 2 内的点都不是" C 1 - C 2 型点".

已知函数 f ( x ) = 2 sin ( ω x ) ,其中常数 ω > 0
(1)若 y = f ( x ) - π 4 , 2 π 3 上单调递增,求 ω 的取值范围;
(2)令 ω = 2 ,将函数 y = f ( x ) 的图像向左平移 π 6 个单位,再向上平移1个单位,得到函数 y = g ( x ) 的图像,区间 a , b a , b R a < b )满足: y = g ( x ) a , b 上至少含有30个零点,在所有满足上述条件的 a , b 中,求 b - a 的最小值.

甲厂以 x 千克/小时的速度运输生产某种产品(生产条件要求 1 x 10 ),每小时可获得利润是 100 ( 5 x + 1 - 3 x ) 元.
(1)要使生产该产品2小时获得的利润不低于3000元,求 x 的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.

如图,在长方体 A B C D - A 1 B 1 C 1 D 1 中, A B = 2 , A D = 1 , A 1 A = 1 ,证明直线 B C 1 平行于平面 D A 1 C ,并求直线 B C 1 到平面 D 1 A C 的距离.

image.png

给定常数 c > 0 ,定义函数 f x = 2 x + c + 4 - x + c ,数列 a 1 , a 2 , a 3 , 满足 a n + 1 = f a n , n N * .
(1)若 a 1 = - c - 2 ,求 a 2 a 3
(2)求证:对任意 n N * , a n + 1 - a n c
(3)是否存在 a 1 ,使得 a 1 , a 2 , , a n , 成等差数列?若存在,求出所有这样的 a 1 ,若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号