游客
题文

如左图:直线y=kx+4k(k≠0)交x轴于点A,交y轴于点C,点M(2,m)为直线AC上一点,过点M的直线BD交x轴于点B,交y轴于点D.
(1)求的值(用含有k的式子表示.);
(2)若S△BOM=3S△DOM,且k为方程(k+7)(k+5)﹣(k+6)(k+5)=的根,求直线BD的解析式.
(3)如右图,在(2)的条件下,P为线段OD之间的动点(点P不与点O和点D重合),OE上AP于E,DF上AP于F,下列两个结论:①值不变;②值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(1)计算: ( 1 2 ) - 2 + ( 3 . 14 - π ) 0 + | 3 - 12 | - 4 sin 60 °

(2)先化简,再求值: ( 1 x - 1 - x + 1 ) ÷ x - 2 x 2 - 1 ,其中 x = 2 - 1

如图,已知二次函数的图象与 x 轴交于 A B ( - 3 , 0 ) 两点,与 y 轴交于 C ( 0 , - 3 ) ,对称轴为直线 x = - 1 ,直线 y = - 2 x + m 经过点 A ,且与 y 轴交于点 D ,与抛物线交于点 E ,与对称轴交于点 F

(1)求抛物线的解析式和 m 的值;

(2)在 y 轴上是否存在点 P ,使得以 D E P 为顶点的三角形与 ΔAOD 相似,若存在,求出点 P 的坐标;若不存在,试说明理由;

(3)直线 y = 1 上有 M N 两点 ( M N 的左侧),且 MN = 2 ,若将线段 MN 在直线 y = 1 上平移,当它移动到某一位置时,四边形 MEFN 的周长会达到最小,请求出周长的最小值(结果保留根号).

如图, O 的半径为1,点 A O 的直径 BD 延长线上的一点, C O 上的一点, AD = CD A = 30 °

(1)求证:直线 AC O 的切线;

(2)求 ΔABC 的面积;

(3)点 E BND ̂ 上运动(不与 B D 重合),过点 C CE 的垂线,与 EB 的延长线交于点 F

①当点 E 运动到与点 C 关于直径 BD 对称时,求 CF 的长;

②当点 E 运动到什么位置时, CF 取到最大值,并求出此时 CF 的长.

如图,一次函数 y 1 = kx + b ( k 0 ) 与反比例函数 y 2 = m x ( m 0 ) 的图象交于

A ( 1 , 2 ) B ( - 2 , a ) ,与 y 轴交于点 M

(1)求一次函数和反比例函数的解析式;

(2)在 y 轴上取一点 N ,当 ΔAMN 的面积为3时,求点 N 的坐标;

(3)将直线 y 1 向下平移2个单位后得到直线 y 3 ,当函数值 y 1 > y 2 > y 3 时,求 x 的取值范围.

小明周末与父母一起到遂宁湿地公园进行数学实践活动,在 A 处看到 B C 处各有一棵被湖水隔开的银杏树,他在 A 处测得 B 在北偏西 45 ° 方向, C 在北偏东 30 ° 方向,他从 A 处走了20米到达 B 处,又在 B 处测得 C 在北偏东 60 ° 方向.

(1)求 C 的度数;

(2)求两颗银杏树 B C 之间的距离(结果保留根号).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号