(本小题满分14分)下图是一块平行四边形园地ABCD,经测量,AB=20m,BC=10m,∠ABC=120°.拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同花卉.设EB=x,EF=y(单位:m).
(Ⅰ)当点F与点C重合时,试确定点E的位置;
(Ⅱ)求y关于x的函数关系式;
(Ⅲ)请确定点E,F的位置,使直路EF长度最短.
(本小题满分10分)选修4—5:不等式选讲
设函数
(1)若a=1,解不等式;
(2)若函数有最小值,求实数a的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程选讲.
在直角坐标系中,曲线
的参数方程为
(
为参数),若以该直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为:
(其中
为常数).
(1)若曲线与曲线
只有一个公共点,求
的取值范围;
(2)当时,求曲线
上的点与曲线
上点的最小距离.
(本小题满分10分)选修4—1:几何证明选讲
如图,AB是的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且
,求证:
(1);
(2).
(本小题满分12分)已知函数.
(1)讨论函数的单调性;
(2)对于任意正实数,不等式
恒成立,求实数
的取值范围;
(3)是否存在最小的正常数,使得:当
时,对于任意正实数
,不等式
恒成立?给出你的结论,并说明结论的合理性.
(本小题满分12分)已知椭圆的离心率为
,椭圆
的右焦点
和抛物线
的焦点相同.
(1)求椭圆的方程.
(2)如图,已知直线与椭圆
及抛物线
都有两个不同的公共点,且直线
与椭圆
交于
两点;过焦点
的直线
与抛物线
交于
两点,记
,求
的取值范围.