关于的不等式
.
(Ⅰ)当时,解此不等式;
(Ⅱ)设函数,当
为何值时,
恒成立?
(本小题满分为16分)数列,
,
满足:
,
,
.
(1)若数列是等差数列,求证:数列
是等差数列;
(2)若数列,
都是等差数列,求证:数列
从第二项起为等差数列;
(3)若数列是等差数列,试判断当
时,数列
是否成等差数列?证明你的结论.
(本小题满分为16分)已知函数.
(1)若,求函数
的极值,并指出极大值还是极小值;
(2)若,求函数
在
上的最值;
(3)若,求证:在区间
上,函数
的图象在
的图象下方.
(本小题满分为14分) 如图,过四棱柱形木块上底面内的一点
和下底面的对角线
将木块锯开,得到截面
.
(1)请在木块的上表面作出过的锯线
,并说明理由;
(2)若该四棱柱的底面为菱形,四边形是矩形时,试证明:平面
平面
.
(本小题满分为14分)已知函数,点
分别是函数
图象上的最高点和最低点.
(1)求点的坐标以及
的值;
(2)设点分别在角
的终边上,求
的值.
(本小题满分10分) 选修4—5:不等式选讲
已知关于的不等式
,其解集为
.
(Ⅰ)求的值;
(Ⅱ)若,
均为正实数,且满足
,求
的最小值.