(本小题满分为16分)已知函数.
(1)若,求函数
的极值,并指出极大值还是极小值;
(2)若,求函数
在
上的最值;
(3)若,求证:在区间
上,函数
的图象在
的图象下方.
若直线被曲线
所截得的弦长大于
,求正整数
的最小值。
如图,在中,点
是
的中点,点
是
的中点,
的延长线交
与点
。
(1)求的值;
(2)若的面积为
,四边形
的面积为
,求
的值。
(本小题满分12分)
已知函数为自然对数的底数).
当时,求
的单调区间;若函数
在
上无零点,求
最小值;
若对任意给定的,在
上总存在两个不同的
),使
成立,求
的取值范围.
(本小题满分12分)已知抛物线
:
和点
,若抛物线
上存在不同两点
、
满足
.
(I)求实数的取值范围;
(II)当时,抛物线
上是否存在异于
的点
,使得经过
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
(本小题满分12分)如图,五面体中,
,底面ABC是正三角形,
=2.四边形
是矩形,二面角
为直二面角,D为
中点。
(I)证明:平面
;
(II)求二面角的余弦值.