(本小题满分12分)
为应对金融危机,刺激消费,某市给市民发放旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:
![]() ![]() |
200元 |
300元 |
400元 |
500元 |
老年 |
0.4 |
0.3 |
0.2 |
0.1 |
中年 |
0.3 |
0.4 |
0.2 |
0.1 |
青年 |
0.3 |
0.3 |
0.2 |
0.2 |
某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,
(Ⅰ)求这三人消费总额大于1300元的概率;
(Ⅱ)设这三人中消费额大于300元的人数为,求
的分布列及数学期望。
(本小题6分)已知直线l在两坐标轴上的截距相等,且点到直线
的距离为
,求直线
的方程.
(本小题10分). 如图,设椭圆(a>b>0)的右焦点为F(1,0),A为椭圆的上顶点,椭圆上的点到右焦点的最短距离为
-1.过F作椭圆的弦PQ,直线AP,AQ分别交直线
于点M,N.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 求当三角形AMN面积最小时直线PQ的方程.
(本小题9分). 如图所示,⊥平面
,
,
,
为
中点.
(1)证明:;
(2)若与平面
所成角的正切值为
,求二面角
-
-
的正弦值.
(本小题8分). 已知圆:
和圆外一点
(1,
),
(1)若直线经过原点
,且圆
上恰有三个点到直线
的距离为
,求直线
的方程;
(2)若经过的直线
与圆
相切,切点分别为
,求切线
的方程及
两切点所在的直线方程.
(本小题7分).如图,在四棱锥中,底面
是正方形,侧棱
,
,
是
的中点,
交
于点
.
(1)证明//平面
;
(2)证明⊥平面
;
(3)求.