(本小题满分10分)选修4—4:坐标系与参数方程:
已知圆C的参数方程为 (φ为参数);
(1)把圆C的参数方程化成直角坐标系中的普通方程;
(2)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,把(1)中的圆C的普通方程化成极坐标方程;设圆C和极轴正半轴的交点为A,写出过点A且垂直于极轴的直线的极坐标方程。
某市共有100万居民的月收入是通过“工资薪金所得”得到的,如图是抽样调查后得到的工资薪金所得X的频率分布直方图。工资薪金个人所得税税率表如表所示。表中“全月应纳税所得额”是指“工资薪金所得”减去3500元所超出的部分(3500元为个税起征点,不到3500元不缴税)。
工资个税的计算公式为:“应纳税额”=“全月应纳税所得额”乘以“适用税率”减去“速算扣除数”。
全月应纳税所得额 |
适用税率(%) |
速算扣除数 |
不超过1500元 |
3 |
0 |
超过1500元至4500元 |
10 |
105 |
超过4500元至9000元 |
20 |
555 |
… |
… |
… |
例如:某人某月“工资薪金所得”为5500元,则“全月应纳税所得额”为5500-3500=2000元,应纳税额为200010%-105=95(元)
在直方图的工资薪金所得分组中,以各组的区间中点值代表该组的各个值,工资薪金所得落入该区间的频率作为x取该区间中点值的概率
(1)试估计该市居民每月在工资薪金个人所得税上缴纳的总税款;
(2)设该市居民每月从工资薪金所得交完税后,剩余的为其月可支配额y(元),试求该市居民月可支配额y的数学期望。
如图,正方体ABCD-A1B1C1D1中,E是AB的中点.
(1)在B1C上是否存在点P,使PB∥平面B1ED,若存在,求出点P的位置,若不存在,请说明理由;
(2)求二面角D-B1E-C的平面角的余弦值.
已知△ABC中,a,b,c分别为角A,B,C的对边,a2+b2<c2,且sin(2C-)=
(1)求角C的大小;
(2)求的取值范围。
已知函数,其中
为实数,
(1)若,求函数
的最小值;
(2)若方程在
上有实数解,求
的取值范围;
(3)设…,
均为正数,且
,求证:
.
已知椭圆:
的离心率
,
是椭圆
上两点,
是线段
的中点,线段
的垂直平分线与椭圆
相交于
两点.
(1)求直线的方程;
(2)是否存在这样的椭圆,使得以为直径的圆过原点
?若存在,求出该椭圆方程;若不存在,请说明理由.