电子对湮灭是指电子和正电子
碰撞后湮灭,产生伽马射线的过程,电子对湮灭是正电子发射计算机断层扫描(PET)及正子湮灭能谱学(PAS)的物理基础.如图所示,在平面直角坐标系xOy上,P点在x轴上,且
,Q点在负y轴上某处.在第Ⅰ象限内有平行于y轴的匀强电场,在第Ⅱ象限内有一圆形区域,与x、y轴分别相切于A、C两点,
,在第Ⅳ象限内有一未知的圆形区域(图中未画出),未知圆形区域和圆形区域内有完全相同的匀强磁场,磁场方向垂直于xOy平面向里.一束速度大小为v0的电子束从A点沿y轴正方向射入磁场,经C点射入电场,最后从P点射出;另一束速度大小为
的正电子束从Q点沿与y轴正向成45°角的方向射入第Ⅳ象限,而后进入未知圆形磁场区域,离开磁场时正好到达P点,且恰好与从P点射出的电子束正碰发生湮灭,即相碰时两束粒子速度方向相反.已知正负电子质量均为m、电量均为
,电子的重力不计.求:
(1)圆形区域内匀强磁场磁感应强度B的大小和第Ⅰ象限内匀强电场的场强E的大小;
(2)电子从A点运动到P点所用的时间;
(3)Q点纵坐标及未知圆形磁场区域的面积S.
如图所示,矩形线圈边长为ab=20 cm,bc=10 cm,匝数N=100匝,磁场的磁感应强度B=0.01 T.当线圈以n=50 r/s的转速从图示位置开始逆时针匀速转动时,求:
(1)线圈中交变电动势瞬时值表达式;
(2)从线圈开始转起动,经0.01 s时感应电动势的瞬时值.
一条长为0.80m的轻绳一端固定在点,另一端连接一质量
=0.10kg的小球,悬点
距离水平地面的高度H = 1.00m。开始时小球处于
点,此时轻绳拉直处于水平方向上,如图所示。让小球从静止释放,当小球运动到
点时,轻绳碰到悬点
正下方一个固定的钉子P时立刻断裂。不计轻绳断裂的能量损失,取重力加速度g=10m/s2。求:
(1)当小球运动到点时的速度大小;
(2)绳断裂后球从点抛出并落在水平地面的C点,求C点与
点之间的水平距离;
(3)若OP=0.6m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力。
质量为m的卫星离地面R0处做匀速圆周运动。设地球的半径也为R0,地面的重力加速度为g,引力常数G,求:(1)地球的质量; (2)卫星的线速度大小。
如图所示,光滑水平面AB与一半圆开轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧轻质弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆轨道瞬间,对轨道的压力为其重力的8倍,之后向上运动恰好能完成半圆周运动到达C点,重力加速度为g。求;
(1)弹簧弹力对物块做的功
(2)物块从B到C摩擦阻力做的功
(3)物块离开C点后,再落回到水平面上时相对于C点的水平距离
如图所示,AB为固定在竖直平面内粗糙倾斜轨道,BC为光滑水平轨道,CD为固定在竖直平面内的光滑圆弧轨道,且AB与BC通过一小段光滑弧形轨道相连,BC与弧CD相切。已知AB长为L=10m,倾角θ=37°,BC长s=4m,CD弧的半径为R=2m,O为其圆心,∠COD=143°。整个装置处在水平向左的匀强电场中,电场强度大小为E=1×103N/C。一质量为m=0.4kg、电荷量为q=" +3×10" -3C的物体从A点以初速度vA=15m/s沿AB轨道开始运动。若物体与轨道AB间的动摩擦因数为μ=0.2,sin37°=0.6,cos37°=0.8,g=10m/s2,物体运动过程中电荷量不变。求:
(1)物体在AB轨道上运动时,重力和电场力对物体所做的总功;
(2)物体到达B点的速度;
(3)通过计算说明物体能否到达D点。