(本小题满分14分)已知函数其中
为常数,函数
和
的图象在它们与坐标轴交点的切线互相平行.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)若不等式在区间
上恒成立,求实数
的取值范围.
为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:
处罚金额x(元) |
0 |
5 |
10 |
15 |
20 |
会闯红灯的人数y |
80 |
50 |
40 |
20 |
10 |
若用表中数据所得频率代替概率.现从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
(Ⅰ)求这两种金额之和不低于20元的概率;
(Ⅱ)若用X表示这两种金额之和,求X的分布列和数学期望.
已知x,y,z均为正数.求证:.
已知三点(3,10),(7,20),(11,24)的横坐标x与纵坐标y具有线性关系,求其线性回归方程.
(参考公式:,
)
若a,b,cÎR+,且a+b+c=1,求的最大值.
设函数,其中
.
(1)当时,求不等式
的解集;
(2)若不等式的解集为
,求
的值.