(本小题满分12分)为迎接2015年在兰州举行的“中国兰州国际马拉松赛”,某单位在推介晚会中进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的个小球,分别印有“兰州马拉松”和“绿色金城行”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“兰州马拉松”即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取
次.已知从盒中抽取两个小球不都是“绿色金城行”标志的概率为
.
(1)求盒中印有“兰州马拉松”标志的小球个数;
(2)用表示某位嘉宾抽奖的次数,求
的分布列和期望.
设方程x2-x+2=0的两个根分别为α,β,求log4的值.
已知数列满足
,求数列
的通项公式。
已知函数f(x)是(x
R)的反函数,函数g(x)的图象与函数
的图象关于直线x=-2成轴对称图形,设F(x)=f(x)+g(x).
(1)求函数F(x)的解析式及定义域;
(2)试问在函数F(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直?若存在,求出A,B坐标;若不存在,说明理由.
某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是该商品的日销售量Q(件)与时间t(天)的函数关系是
,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?
已知函数(a、b是常数且a>0,a≠1)在区间[-
,0]上有ymax=3,
ymin=,试求a和b的值.