游客
题文

(理科)设椭圆E: (a,b>0)过M(2,),N(,1)两点,O为坐标原点,
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过 m 的工人数填入下面的列联表:


超过 m

不超过 m

第一种生产方式



第二种生产方式



(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附: K 2 = n ad - bc 2 a + b c + d a + c b + d

等比数列 a n 中, a 1 = 1 a 5 = 4 a 3

(1)求 a n 的通项公式;

(2)记 S n a n 的前 n 项和.若 S m = 63 ,求 m

x , y , z R ,且 x + y + z = 1 .

(1)求 ( x - 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 的最小值;

(2)若 ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - a ) 2 1 3 成立,证明: a - 3 a - 1 .

如图,在极坐标系 Ox 中, A ( 2 , 0 ) B ( 2 , π 4 ) C ( 2 , 3 π 4 ) D ( 2 , π ) ,弧 AB BC CD 所在圆的圆心分别是 ( 1 , 0 ) ( 1 , π 2 ) ( 1 , π ) ,曲线 M 1 是弧 AB ,曲线 M 2 是弧 BC ,曲线 M 3 是弧 CD .

(1)分别写出 M 1 M 2 M 3 的极坐标方程;

(2)曲线 M M 1 M 2 M 3 构成,若点 P M 上,且 | OP | = 3 ,求 P 的极坐标.

已知曲线 Cy= x 2 2 D为直线 y= - 1 2 上的动点,过 DC的两条切线,切点分别为 AB.

(1)证明:直线 AB过定点:

(2)若以 E(0, 5 2 )为圆心的圆与直线 AB相切,且切点为线段 AB的中点,求四边形 ADBE的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号