(文科)设椭圆的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过三点的圆与直线
相切,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于点
,求实数
的取值范围.
在平面直角坐标系中,已知点
在圆
内,动直线
过点
且交圆
于
两点,若△ABC的面积的最大值为
,则实数
的取值范围为.
设,
且
,其中当
为偶数时,
;当
为奇数时,
.
(1)证明:当,
时,
;
(2)记,求
的值.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.
已知函数,若函数
的图象恒在
轴上方,求实数
的取值范围.
在平面直角坐标系中,圆的参数方程为
,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.求:
(1)圆的直角坐标方程;(2)圆的极坐标方程.