(文科)在平面直角坐标系中,动点
到定点
的距离比点
到
轴的距离大
,设动点
的轨迹为曲线
,直线
交曲线
于
两点,
是线段
的中点,过点
作
轴的垂线交曲线
于点
.
(Ⅰ)求曲线的方程;
(Ⅱ)证明:曲线在点
处的切线与
平行;
(Ⅲ)若曲线上存在关于直线
对称的两点,求
的取值范围.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若存在,使不等式
成立,求实数
的取值范围;
(Ⅲ)若关于的方程
在区间
上恰好有两个不相等的实根,求实数
的取值范围.
已知定义域为的函数
是奇函数.
(Ⅰ)求的值;
(Ⅱ)判断的单调性,并证明你的结论;
(Ⅲ)若对任意的,不等式
恒成立,求
的取值范围.
某商场销售某件商品的经验表明,该商品每日的销量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数。已知销售价格为5元/千克时,每日可售出该商品11千克。
(Ⅰ)求实数的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。
如图,在平面直角坐标系中,以ox轴为始边做两个锐角
,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为
(Ⅰ)求的值; (Ⅱ)求
的值。
已知集合,集合
.
(Ⅰ)若,求
;
(Ⅱ)若全集U=R,且,求实数
的取值范围.