三棱锥及其侧视图、俯视图如图所示。设
,
分别为线段
,
的中点,
为线段
上的点,且
。
(1)证明:为线段
的中点;
(2)求二面角的余弦值。
已知函数,
.
(1)求函数的最小正周期和单调递减区间;
(2)已知中的三个内角
所对的边分别为
,若锐角
满足
,且
,
,求
的面积.
已知函数.
(1)当时,求函数
的单调增区间;
(2)当时,求函数
在区间
上的最小值;
(3)记函数图象为曲线
,设点
,
是曲线
上不同的两点,点
为线段
的中点,过点
作
轴的垂线交曲线
于点
.试问:曲线
在点
处的切线是否平行于直线
?并说明理由.
已知数列,
满足
,
,
,
.
(1)求证:数列是等差数列,并求数列
的通项公式;
(2)设数列满足
,对于任意给定的正整数
,是否存在正整数
,
(
),使得
,
,
成等差数列?若存在,试用
表示
,
;若不存在,说明理由.
如图,已知,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆及圆
的方程;
(2)若点是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求的最大值;
(ⅱ)试问:,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.
根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率与日产量
(件)之间近似地满足关系式
(日产品废品率
).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润
日正品赢利额
日废品亏损额)
(1)将该车间日利润(千元)表示为日产量
(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?