(本题14分)数列的首项
。
(1)求证是等比数列,并求
的通项公式;
(2)已知函数是偶函数,且对任意
均有
,当
时,
,求使
恒成立的
的取值范围。
设矩阵(其中
),若曲线
在矩阵
所对应的变换作用下得到曲线
,求
的值.
如图,点为锐角
的内切圆圆心,过点
作直线
的垂线,垂足为
,圆
与边
相切于点
.若
,求
的度数.
已知数列满足
,
,
,
是数列
的前
项和.
(1)若数列为等差数列.
(ⅰ)求数列的通项;
(ⅱ)若数列满足
,数列
满足
,试比较数列
前
项和
与
前
项和
的大小;
(2)若对任意,
恒成立,求实数
的取值范围.
已知函数(
为常数),其图象是曲线
.
(1)当时,求函数
的单调减区间;
(2)设函数的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
已知的三个顶点
,
,
,其外接圆为
.
(1)若直线过点
,且被
截得的弦长为2,求直线
的方程;
(2)对于线段上的任意一点
,若在以
为圆心的圆上都存在不同的两点
,使得点
是线段
的中点,求
的半径
的取值范围.