已知是直线
上的动点,
是
的两条切线,
是切点,
是圆心,求四边形
面积的最小值。
正方体,
,E为棱
的中点.
(1)求证:平面
;
(2)求三棱锥的体积.
如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN∥平面PAD.
(2)求证:MN⊥CD.
如图几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面积和体积。
已知函数图像上一点
处的切线方程为
,其中
为常数.
(Ⅰ)函数是否存在单调减区间?若存在,则求出单调减区间(用
表示);
(Ⅱ)若不是函数
的极值点,求证:函数
的图像关于点
对称.
(本小题满分14分)
如图,已知椭圆的离心率
,左、右焦点分别为
、
,点
满足:
在线段
的中垂线上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若斜率为的直线
与
轴、椭圆
顺次相交于点
、
、
,且
,求
的取值范围.