(本小题满分12分)已知圆:
,直线
过定点
.
(Ⅰ)若与圆
相切,求
的方程;
(Ⅱ)若与圆
相交于
、
两点,求
的面积的最大值,并求此时直线
的方程.
(1)已知,
,是否存在常数
时,使得
的值域为[
]?若存在,求出
的值,若不存在,说明理由。
(2)若关于的方程
在
内有实数根,求实数
的范围。
圆内有一点
,
为过点
且倾斜角为
的弦,
(1)当=1350时,求
;
(2)当弦被点
平分时,求出直线
的方程;
(3)设过点的弦的中点为
,求点
的轨迹方程.
如图,在平面直角坐标系中,锐角和钝角
的终边分别与单位圆交于
,
两点.
(1)如果、
两点的纵坐标分别为
、
,求
和
;
(2)在(1)的条件下,求的值;
(3)已知点,求函数f(
)=
的值域.
在△ABC中,角A、B、C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求sinA+cosA的最大值,并求取得最大值时角A,B的大小.
如图:在三棱锥中,已知点
、
、
分别为棱
、
、
的中点.
(1)求证:∥平面
;
(2)若,
,求证:平面
⊥平面
.