已知公比不为的等比数列
的首项
,前
项和为
,且
成等差数列.
(1)求等比数列的通项公式;
(2)对,在
与
之间插入
个数,使这
个数成等差数列,记插入的这
个数的和为
,求数列
的前
项和
.
证明:,
,
不能为同一等差数列中的三项.
设a、b、c均为大于1的正数,且ab=10,求证:logac+logbc≥4lgc.
数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n=1,2,3,…),证明:
(1)数列是等比数列;
(2)Sn+1=4an.
设数列满足a1=0且
-
= 1.
(1) 求的通项公式;
(2) 设bn=,记Sn=
,证明:Sn<1.
设同时满足条件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界” 数列.
(1) 若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn;
(2) 判断(1)中的数列{Sn}是否为“特界” 数列,并说明理由.