(本小题满分14分)已知函数.
(Ⅰ)求证:曲线在点
处的切线在
轴上的截距为定值;
(Ⅱ)若时,不等式
恒成立,求实数
的取值范围.
已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-t|-1有三个零点,求t的值;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.
(3)过M()的直线
:
与过N(
)的直线
:
的交点P(
)在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求
·
的值.
如图,在边长为a的正方体中,M、N、P、Q分别为AD、CD、
、
的中点.
(1)求点P到平面MNQ的距离;
(2)求直线PN与平面MPQ所成角的正弦值.
某校高三年级文科学生600名,从参加期末考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:
分组 |
频数 |
频率 |
[45,60) |
2 |
0.04 |
[60,75) |
4 |
0.08 |
[75,90) |
8 |
0.16 |
[90,105) |
11 |
0.22 |
[105,120) |
15 |
0.30 |
[120,135) |
a |
b |
[135,150] |
4 |
0.08 |
合计 |
50 |
1 |
(1)写出a、b的值;
(2)估计该校文科生数学成绩在120分以上学生人数;
(3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分, 乙同学的成绩为145分,求甲乙在同一小组的概率.
在数列中,
,
(1)求数列的通项
;
(2)若存在,使得
成立,求实数
的最小值.