26.甲乙两人在相同条件下各射靶10次,甲10次射靶的成绩的情况如图所示,乙10次射靶的成绩依次是:3环、4环、5环、8环、7环、7环、8环、9环、9环、10环.
(1)请在图中画出乙的射靶成绩的折线图.
(2)请将下表填完整:
|
平均数 |
方差 |
中位数 |
命中9环及以上次数 |
甲 |
7 |
1.2 |
|
|
乙 |
|
4.8 |
|
3 |
(3)请从下列三个不同角度对这次测试结果进行分析.
①从平均数和方差相结合看(分析谁的成绩稳定些);
②从平均数和中位数相结合看(分析谁的成绩好些).
直线与反比例函数
(x>0)的图像交于点A,与坐标轴分别交于M、N两点,当AM=MN时,求k的值.
正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF="FM"
(2)当AE=1时,求EF的长.
在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.
求∠D的度数.
商场对每个营业员在当月某种商品销售件数统计如下:
解答下列问题
(1)设营业员的月销售件数为x(单位:件),商场规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.试求出优秀营业员人数所占百分比;
(2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数;
(3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励。如果要使得所有优秀和称职的营业员中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?并简述其理由.
某商场为了吸引顾客,设计了一种促销活动,在一个不透明的箱子里放有4个相同的小球,在球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本商场同一天内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和,返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.
(1)该顾客至少可得到元购物券,至多可得到元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率