游客
题文

已知⊙O过点D(4,3),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.
(1)求sin∠HAO的值;
(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

,求的值。


如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
求证:△DHQ∽△ABC;
求y关于x的函数解析式并求y的最大值;
当x为何值时,△HDE为等腰三角形?

如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-3,1)、C(-3,0)、O(0,0).将此矩形沿着过E(-,1)、
F(-,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.





求折痕所在直线EF的解析式;
一抛物线经过B、E、B′三点,求此二次函数解析式;
能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.

已知两个全等的直角三角形纸片ABC、DEF,如图⑴放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.

求证:△EGB是等腰三角形;
若纸片DEF不动,问△ABC绕点F逆时针旋转最小度时,四边形ACDE成为以ED为底的梯形(如图⑵).求此梯形的高

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号