(本小题满分10分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 |
[40,50) |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
[90,100] |
男 |
3 |
9 |
18 |
15 |
6 |
9 |
女 |
6 |
4 |
5 |
10 |
13 |
2 |
估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;
|
优分 |
非优分 |
合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
100 |
(2)规定80分以上为优分(含80分),请你根据已知条件作出列联表,并判断是否有
以上的把握认为“数学成绩与性别有关”.
附表及公式
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
.
(本小题满分12分)
不用计算器计算:
(Ⅰ)
(Ⅱ)设求
的值;
(本小题满分12分)
已知集合
(Ⅰ)求:A∪B;
(Ⅱ)若求a的取值范围.
(本小题满分14分)
已知点、
,(
)是曲线C上的两点,点
、
关于
轴对称,直线
、
分别交
轴于点
和点
,
(Ⅰ)用、
、
、
分别表示
和
;
(Ⅱ)某同学发现,当曲线C的方程为:时,
是一个定值与点
、
、
的位置无关;请你试探究当曲线C的方程为:
时,
的值是否也与点M、N、P的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为时,探究
与
经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).
(本小题满分14分)
已知中心在坐标轴原点O的椭圆C经过点A(1,),且点F(-1,0)为其左焦点.
(I)求椭圆C的离心率;
(II)试判断以AF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.
(本小题满分13分)
设命题:对任意实数
,不等式
恒成立;命题
:方程
表示焦点在
轴上的双曲线.
(I)若命题为真命题,求实数
的取值范围;
(II)若命题“”为真命题,且“
”为假命题,求实数
的取值范围.