(本小题满分12分)已知电流I与时间t的关系式为.
(1)下图是在一个周期内的图象,根据图中数据求
的解析式;
(2)如果t在任意一段秒的时间内,电流
都能取得最大值和最小值,那么ω的最小正整数值是多少?
(本小题10分)已知向量,定义函数
(1)求函数最小正周期;
(2)在△ABC中,角A为锐角,且,求边AC的长.
(本小题满分14分)已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,
2Sn=an an+1+r.
(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由;
(2)设,
,
若r>c>4,求证:对于一切n∈N*,不等式恒成立.
(本小题满分14分)已知函数,
,
为常数.
(1)求函数的定义域
;
(2)若时,对于
,比较
与
的大小;
(3)讨论方程解的个数.
给定椭圆>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“伴随圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆的方程及其“伴随圆”方程;
(2)若倾斜角为的直线
与椭圆C只有一个公共点,且与椭圆
的伴随圆相交于M、N两
点,求弦MN的长;
(3)点是椭圆
的伴随圆上的一个动点,过点
作直线
,使得
与椭圆
都只有一个公共点,求证:
⊥
.
如图,α⊥β,α∩β=l, A∈α, B∈β,点A在直线l上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求:
(Ⅰ) 直线AB分别与平面α,β所成角的大小;
(Ⅱ)二面角A1-AB-B1的余弦值.