已知是方程
的两实根,求
的值。
已知椭圆C:的上顶点坐标为
,离心率为
.
(Ⅰ)求椭圆方程;
(Ⅱ)设P为椭圆上一点,A为左顶点,F为椭圆的右焦点,求的取值范围.
已知为等差数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)记数列的前
项和为
,若
成等比数列,求正整数
的值.
在中,内角
所对的边分别为
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,
,求
的值.
(本小题满分14分)
如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90,且BC=2AD=2,AB=4,SA=3.
(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(
)
①求证:对于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的
值;若不存在,说明理由.
(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?