甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数 字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数 时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.
(1)用画树状图或列表的方法,求甲获胜的概率;
(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.
操作与实践:
(1)在图①中,以线段m为一边画菱形,要求菱形的顶点均在格点上.(画出所有符合条件的菱形)
(2)在图②中,平移a、b、c中的两条线段,使它们与线段n构成以n为一边的等腰直角三角形.(画一个即可)
小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月内销售单价不变,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数.
(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.
(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?
如图①,为⊙
的直径,
与⊙
相切于点
,
与⊙
相切于点
,点
为
延长线上一点,且CE=CB.
(1)求证:为⊙
的切线;
(2)如图②,连接AE,AE的延长线与BC的延长线交于点G.若,求线段BC和EG的长.
某学生参加社会实践活动,在景点P处测得景点B位于南偏东方向,然后沿北偏东
方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之的距离.
如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.