①xy•(x﹣y+1)
②﹣3a(4a2﹣a+
b)
已知:如图8,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.求证:∠BAC=∠CAD
若∠B=30°,AB=12,求的长.
某学校九年级的学生去旅游,在风景区看到一棵古松,不知这棵古松有多高,下面是他们的一段对话:
甲:我站在此处看树顶仰角为45°。
乙:我站在此处看树顶仰角为30°。
甲:我们的身高都是1.5m。
乙:我们相距20m。
请你根据两位同学的对话,参考图7计算这棵古松的高度。(参考数据≈1.414,
≈1
.732,结果保留两位小数)。
如图, 已知抛物线经过坐标原点O及,其顶点为B(m,3),C是AB中点,
点E是直线OC上的一个动点 (点E与点O不重合),点D在y轴上, 且EO=ED .(1)求此抛物线及直线OC的解析式;
(2)当点E运动到抛物线上时,
求BD的长;
(3)连接AD, 当点E运动到何处时,△AED的面积为
,请直接写出此时E点的
坐标.
已知在□ABCD中,AE^BC于E,DF平分ÐADC 交线段AE于F.(1)如图1,若AE=AD,ÐADC=60°, 请直接写出线段CD与AF+BE之间所满足的
等量关系;(2)如图2, 若AE=AD,你在(1)中得到的结论是否仍然成立, 若成立,对你的结论
加以证明, 若不成立, 请说明理由;(3)如图3, 若AE :AD =a :b,试探究线段CD、AF、BE之间所满足的等量关系,请直接写出你的结论.
已知二次函数y=ax2+bx+c的图象与反比例函数的图象交于点A (a, -3),与y轴交于点B.
(1)试确定反比例函数的解析式;
(2)若ÐABO =135°, 试确定二次函数的解析式;
(3)在(2)的条件下,将二次函数y=ax2 + bx + c的图象先沿x轴翻折, 再向右平移到与反比例函数
的图象交于点P (x0, 6) . 当x0≤x≤3时, 求平移后的二次函数y的取值范围.