游客
题文

已知正方形OABC中,O为坐标原点,点A在y轴的正半轴上,点C在x轴的正半轴上,点B(4,4).二次函数y=-x2+bx+c的图象经过点A、B.点P(t,0)是x轴上一动点,连接AP.

(1)求此二次函数的解析式;
(2)如图①,过点P作AP的垂线与线段BC交于点G,当点P在线段OC(点P不与点C、O重合)上运动至何处时,线段GC的长有最大值,求出这个最大值;
(3)如图②,过点O作AP的垂线与直线BC交于点D,二次函数y=-x2+bx+c的图象上是否存在点Q,使得以P、C、Q、D为顶点的四边形是以PC为边的平行四边形?若存在,求出t的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知△ABC的三个顶点坐标为A(0,)、B(3,)、C(2,1).

(1)在网格图中,画出△ABC以点B为位似中心,放大到2倍后的位似△
(2)写出的坐标(其中与A 对应、与C 对应)

如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.

(1)证明:△ABC∽△DCA;
(2)若AC=6,BC=9,求AD长.

为了测量电线杆的高度AB,在离电线杆24米的C处,用1.20米的测角仪CD测得电线杆顶端B的仰角α=30°,求电线杆AB的高度(精确到0.1米)

解方程:

计算:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号