工厂里有一种运货的过程可以简化为如图所示,货物以的初速度滑上静止的货车的左端,已知货物质量m=20kg,货车质量M=30kg,货车高h=0.8m。在光滑轨道OB上的A点设置一固定的障碍物,当货车撞到障碍物时会被粘住不动,而货物就被抛出,恰好会沿BC方向落在B点。已知货车上表面的动摩擦因数
,货物可简化为质点,斜面的倾角为
。
(1)求货物从A点到B点的时间;
(2)求AB之间的水平距离;
(3)若已知OA段距离足够长,导致货物在碰到A之前已经与货车达到共同速度,则货车的长度是多少?
黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成。两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期T。
(1)可见星A所受暗星B的引力可等效为位于O点处质量为
的星体(视为质点)对它的引力,设A和B的质量分别为
、
,试求
(用
、
表示);
(2)求暗星B的质量与可见星A的速率v、运行周期T和质量
之间的关系式;
(3)恒星演化到末期,如果其质量大于太阳质量的2倍,它将有可能成为黑洞。若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6
,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,ms=2.0×1030kg)
如图,半径为R的光滑半圆形轨道ABC在竖直平面内,与水平轨道CD相切于C 点,D端有一被锁定的轻质压缩弹簧,弹簧左端连接在固定的挡板上,弹簧右端Q到C点的距离为2R。质量为m的滑块(视为质点)从轨道上的P点由静止滑下,刚好能运动到Q点,并能触发弹簧解除锁定,然后滑块被弹回,且刚好能通过圆轨道的最高点A。已知∠POC=60°,求:
1.滑块与水平轨道间的动摩擦因数μ;
2.弹簧被锁定时具有的弹性势能。
升降机由静止开始以加速度a1匀加速上升2s,速度达到3m/s,接着匀速上升10s,最后再以加速度a2匀减速上升3s才停下来。求:
(1)匀加速上升的加速度大小a1,和匀减 速上升的加速度大小a2.
(2)上升的总高度H.
如图,质量M=lkg的木板静止在水平面上,质量m=lkg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数,铁块与木板之间的动摩擦因数
,取g="10" m/s2.现给铁块施加一个水平向左的力F
(1)若力F恒为8 N,经1 s铁块运动到木板的左端。求:木板的长度L
(2)若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中作出铁块受到的摩擦力f随力F大小变化的图象
某运动员做跳伞训练,他从悬停在空中的直升飞机上由静止跳下,跳离飞机一段时间后打开降落伞做减速下落,他打开降落伞后的速度图线如图a.降落伞用8根对称的绳悬挂运动员,每根绳与中轴线的夹角均为37°,如图b.已知人的质量为50kg,降落伞质量也为50kg,不计人所受的阻力,打开伞后伞所受阻力f与速度v成正比,即f=kv(g取10m/s2,sin53°=0.8,cos53°=0.6).求:
(1)打开降落伞前人下落的距离为多大?
(2)求阻力系数k和打开伞瞬间的加速度a的大小和方向?
(3)悬绳能够承受的拉力至少为多少?