如图,在直三棱柱中,
,
,
,
,E在
上,且
,
分别为
的中点.
(1)求证:平面
;
(2)求异面直线与
所成的角;
(3)求点到平面
的距离.
已知抛物线的焦点为F,以点
为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点。
(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由。
已知函数
(I)求函数的单调递增区间;
(II)若的图像有公共点,且在该点处的切线相同,用a表示b,并求b的最大值。
已知函数
(I)求数列的通项公式;
(II)若数列
某学校有男教师150名,女教师100人,按照分层抽样的方法抽出5人进行一项问卷调查。
(I)求某老师被抽到的概率及5人中的男、女教师的人数;
(II)若从这5人中选出两人进行某项支教活动,则抽出的两人中恰有一名女教师的概率。
如图,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点。
(I)证明:PQ//平面ACD;
(II)求异面直线AE与BC所成角的余弦值;
(III)求AD与平面ABE所成角的正弦值;