下图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆弧AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作,交AB 于M,交EF于N,交圆弧AB于P,已知
(单位:m),记通风窗EFGH的面积为S(单位:
)
(1)按下列要求建立函数关系式:
(i)设,将S表示成
的函数;
(ii)设,将S表示成
的函数;
(2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大?
数列中,
,前
项的和是
,且
,
.
(1)求数列的通项公式;
(2)记,求
.
已知函数,
,且
的解集为
.
(Ⅰ)求的值;
(Ⅱ)若,且
,求证:
已知曲线的参数方程是
(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是ρ=2,正方形ABCD的顶点都在
上,且A,B,C,D依逆时针次序排列,点A的极坐标为
.
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为上任意一点,求
的取值范围.
如图,、
是圆
的半径,且
,
是半径
上一点:延长
交圆
于点
,过
作圆
的切线交
的延长线于点
.求证:
.
已知(
).
(Ⅰ)当时,判断
在定义域上的单调性;
(Ⅱ)若在
上的最小值为
,求
的值;
(Ⅲ)若在
上恒成立,试求
的取值范围.