如图,等腰Rt△ABD中,AB=AD,点M 为边AD上一动点,点E在DA的延长线上,且AM=AE,以BE为直角边,向外作等腰Rt△BEG,MG交AB于N,连NE、DN.
(1)求证:∠BEN=∠BGN.
(2)求的值.
(3)当M在AD上运动时,探究四边形BDNG的形状,并证明之.
某中学为了科学建设“学生健康成长工程”,随机抽取了部分学生家庭对其家长进行了主题“周末孩子在家您关心了吗?”的调查问卷,将收回的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:
代号 |
情况分类 |
家庭数 |
|
带孩子玩且关心其作业完成情况 |
8 |
|
只关心其作业完成情况 |
|
|
只带孩子玩 |
4 |
|
既不带孩子玩也不关心其作业完成情况 |
|
(1)求 , 的值;
(2)该校学生家庭总数为500,学校决定按比例在 、 、 类家庭中抽取家长组成培训班,其比例为 类 , 、 类各取 ,请你估计该培训班的家庭数;
(3)若在 类家庭中只有一个是城镇家庭,其余是农村家庭,请用列举法求出 类中随机抽出2个家庭进行深度家访,其中有一个是城镇家庭的概率.
如图,在四边形 中, ,点 是 边的中点,点 恰是点 关于 所在直线的对称点.
(1)证明:四边形 为菱形;
(2)连接 交 于点 ,若 ,求线段 的长.
如图,已知抛物线 交 轴与 , 两点(点 在点 左侧),将直尺 与 轴负方向成 放置,边 经过抛物线上的点 ,与抛物线的另一交点为点 ,直尺被 轴截得的线段 ,且 的面积为6.
(1)求该抛物线的解析式;
(2)探究:在直线 上方的抛物线上是否存在一点 ,使得 的面积最大?若存在,请求出面积的最大值及此时点 的坐标;若不存在,请说明理由.
(3)将直尺以每秒2个单位的速度沿 轴向左平移,设平移的时间为 秒,平移后的直尺为 ,其中边 所在的直线与 轴交于点 ,与抛物线的其中一个交点为点 ,请直接写出当 为何值时,可使得以 、 、 、 为顶点的四边形是平行四边形.
中, , ,点 为直线 上一动点(点 不与 , 重合),以 为边在 右侧作正方形 ,连接 .
(1)观察猜想
如图1,当点 在线段 上时,
① 与 的位置关系为: .
② , , 之间的数量关系为: ;(将结论直接写在横线上)
(2)数学思考
如图2,当点 在线段 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点 在线段 的延长线上时,延长 交 于点 ,连接 .若已知 , ,请求出 的长.
如图,已知 为半圆 的直径, 为半圆 上一点,连接 , ,过点 作 于点 ,过点 作半圆 的切线交 的延长线于点 ,连接 并延长交 于点 .
(1)求证: ;
(2)若半圆 的直径为10, ,求 的长.