计算
荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价 (元 千克)与时间第 (天 之间的函数关系为:
,日销售量 (千克)与时间第 (天 之间的函数关系如图所示:
(1)求日销售量 与时间 的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2400元?
(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠 元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间 的增大而增大,求 的取值范围.
已知关于 的一元二次方程 ,其中 为常数.
(1)求证:无论 为何值,方程总有两个不相等实数根;
(2)已知函数 的图象不经过第三象限,求 的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求 的最大整数值.
如图, 某数学活动小组为测量学校旗杆 的高度, 沿旗杆正前方 米处的点 出发, 沿斜面坡度 的斜坡 前进 4 米到达点 ,在点 处安置测角仪, 测得旗杆顶部 的仰角为 ,量得仪器的高 为 1.5 米 . 已知 、 、 、 、 在同一平面内, , . 求旗杆 的高度 . (参 考数据: , , . 计算结果保留根号)
(1)解方程组:
(2)先化简,再求值: ,其中 .
已知:如图所示,在平面直角坐标系 中, , , ,若点 是边 上的一个动点(与点 、 不重合),过点 作 交 于点 .
(1)求点 的坐标;
(2)当 的周长与四边形 的周长相等时,求 的长;
(3)在 上是否存在点 ,使得 为等腰直角三角形?若存在,请求出此时 的长;若不存在,请说明理由.