(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
态度 调查人群 |
应该取消 |
应该保留 |
无所谓 |
在校学生 |
2100人 |
120人 |
![]() |
社会人士 |
600人 |
![]() |
![]() |
(1)已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为
,现用分层抽样的方法在所有参与调查的人中抽取
人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数
的分布列和数学期望.
如图,在四棱锥中,侧面
底面
,
,
为
中点,底面
是直角梯形,
,
,
,
.
(1) 求证:平面
;
(2) 求证:平面平面
;
(3) 设为棱
上一点,
,试确定
的值使得二面角
为
.
为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:
规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)试用上述样本数据估计甲、乙两厂生产的优等品率;
(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望
;
(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
在中,角
的对边分别为
向量
,
,且
.
(1)求的值;
(2)若,
,求角
的大小及向量
在
方向上的投影.
已知函数(
).
(1)当时,求函数
的单调区间;
(2)当时,
取得极值,求函数
在
上的最小值;
已知抛物线的顶点在坐标原点,焦点在轴上,且过点
.
(1)求抛物线的标准方程;
(2)与圆相切的直线
交抛物线于不同的两点
若抛物线上一点
满足
,求
的取值范围.