(本小题满分13分)已知椭圆(
)的离心率为
,
是椭圆的焦点,点
,直线
的斜率为
,
为坐标原点.
(1)求椭圆的方程;
(2)设过点的直线与
相交于
、
两点,当
的面积最大时,求
的方程.
(本小题满分10分)已知函数在
处取得极值.
(Ⅰ)求实数的值;
(Ⅱ)过点作曲线
的切线,求此切线方程.
(本小题满分10分)
(Ⅰ)证明:.
(Ⅱ)已知圆的方程是,则经过圆上一点
的切线方程为
,类比上述性质,试写出椭圆
类似的性质.
选修4—5:不等式选讲
已知函数
(1)解不等式;
(2)对任意,都有
成立,求实数
的取值范围.
选修4—4:坐标系与参数方程
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以
轴正半轴为极轴,曲线
的极坐标方程为
,曲线
的参数方程为
(
为参数,
),射线
与曲线
交于(不包括极点O)三点
(1)求证:;
(2)当时,B,C两点在曲线
上,求
与
的值
选修4—1:几何证明选讲
如图,是⊙
的一条切线,切点为
,
都是⊙
的割线,
(1)证明:;
(2)证明:∥
.