已知向量
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,上的最大值,求A,b和△ABC的面积.
(本小题满分13分)已知向量,
,若
.
(Ⅰ) 求函数的最小正周期;
(Ⅱ) 已知的三内角
的对边分别为
,且
,
(A为锐角),
,求
的值.
设P:二次函数在区间
上存在零点;Q:函数
在
内没有极值点.若“P或Q”为真命题,“P且Q”为假命题,求实数
的取值范围.
(本小题满分13分)已知数列的前
项和是
,且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列
的前
项和
.
(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①
在D内单调递增或单调递减;②存在区间[
]
,使
在[
]上的值域为[
];那么把
(
)叫闭函数.
(1)求闭函数符合条件②的区间[
];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数
的取值范围.
(本小题满分12分)
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).
(1)分别写出两种产品的收益与投资额的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?