如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?
在的展开式中,求系数绝对值最大的项和系数最大的项。
连接直角三角形的直角顶点与斜边的两个三等分点,所得线段的长分别为和
,求斜边长。
等差数列,
的前
项和分别为
,
,若
,求
①;②
。
(本题满分12分.)
数列中{an},a1=8,a4=2,且满足an+2= 2an+1- an,
(1)求数列{an}的通项公式;
(2)设Sn=,求Sn
(本题满分12分.)已知26列货车以相同的速度v由A地驶向相距400千米远的B地,
每两列货车间的距离为d千米,现知d与v速度的平方成正比,且当v=20,d=1.
(1) 写出d关于v的函数解析式式及定义域;
(2)若不计货车的长度,则26列货车都到达B地至少需要多少小时?此时货车速度为多少?