游客
题文

(本小题满分14分)设分别为椭圆的左、右焦点,点在椭圆上,且点关于点对称.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点的直线与椭圆相交于两点,过点且平行于的直线与椭圆交于另一点,问是否存在直线,使得四边形的对角线互相平分?若存在,求出的方程;若不存在,说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知向量互相垂直,其中.
(Ⅰ)求的值;
(Ⅱ)若,求的值.


(Ⅰ)若,求实数的值;
(Ⅱ)求方向上的正射影的数量.

已知函数f (x) =
(1)试判断当的大小关系;
(2)试判断曲线是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.

是各项都为正数的等比数列, 是等差数列,且
(1)求,的通项公式;
(2)记的前项和为,求证:
(3)若均为正整数,且记所有可能乘积的和,求证:

曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧).
(1)当=时,求椭圆的方程;
(2)若,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号