(本小题满分14分)设,
分别为椭圆
的左、右焦点,点
在椭圆
上,且点
和
关于点
对称.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点的直线
与椭圆相交于
,
两点,过点
且平行于
的直线与椭圆交于另一点
,问是否存在直线
,使得四边形
的对角线互相平分?若存在,求出
的方程;若不存在,说明理由.
已知向量与
互相垂直,其中
.
(Ⅰ)求和
的值;
(Ⅱ)若,
,求
的值.
设
(Ⅰ)若,求实数
的值;
(Ⅱ)求在
方向上的正射影的数量.
已知函数f (x) =
(1)试判断当的大小关系;
(2)试判断曲线和
是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.
设是各项都为正数的等比数列,
是等差数列,且
,
(1)求,
的通项公式;
(2)记的前
项和为
,求证:
;
(3)若均为正整数,且
记所有可能乘积
的和
,求证:
.
曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线
的短轴,并且是曲线
的长轴 . 直线
与曲线
交于A,D两点(A在D的左侧),与曲线
交于B,C两点(B在C的左侧).
(1)当=
,
时,求椭圆
的方程;
(2)若,求
的值.