(本小题满分10分)如图,的半径
垂直于直径
,
为
上一点,
的延长线交
于
,过
点的切线交
的延长线于
。
(1)求证:;
(2)若的半径为
,
.求:
的长。
设数列前
项和为
, 满足
.
(1)求数列的通项公式;
(2)令求数列
的前
项和
;
(3)若不等式对任意的
恒成立,求实数
的取值范围.
某兴趣小组测量电视塔的高度
(单位
),如示意图,垂直放置的标杆
高度
,仰角
,
.
(1)该小组已经测得一组的值,
,
,请据此算
的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离(单位
),使
与
之差较大,可以提高测量精确度,若电视塔实际高度为
,问
为多少时,
最大?
已知集合 ,
,
求.
在中,角
所对的边分别为
, 且
成等差数列,
成等比数列. 求证:
为等边三角形.
(本小题满分12分)
已知函数且导数
.
(1)试用含有的式子表示
,并求
的单调区间;
(2)对于函数图象上不同的两点,且
,如果在函数图像上存在点
(其中
)使得点
处的切线
,则称
存在“相依切线”.特别地,当
时,又称
存在“中值相依切线”.试问:在函数
上是否存在两点
使得它存在“中值相依切线”?若存在,求
的坐标,若不存在,请说明理由.