【改编题】(本小题满分12分)已知圆,点
,以线段AB为直径的圆内切于圆
,记点B的轨迹为
.
(Ⅰ)求曲线的方程;
(Ⅱ)若直线(
)与曲线
交于不同的两点
,
,以线段
为直径作圆
.若圆
与
轴相切,求直线
被圆
所截得的弦长..
(本小题满分13分)如图,四边形ABCD是边长为1的正方形,
平面ABCD,
平面
,且
,E为BC的中点.(Ⅰ)求异面直线NE与AM所成角的余弦值;(Ⅱ)在线段AN上是否存在点S,使得ES
平面AMN?若存在,求线段AS的长;若不存在,请说明理由.
在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;(Ⅱ)设,
的最大值是5,求k的值.
(本小题满分12分)已知函数,其中
为常数.
(1)当时,
恒成立,求
的取值范围;(2)求
的单调区间.
(本小题满分12分)椭圆的中心为坐标原点
,焦点在
轴上,焦点到相应准线的距离以及离心率均为
,直线
与
轴交于点
,与椭圆
交于相异两点
、
,且
.(1)求椭圆方程;(2)若
,求
的取值范围.
(本小题满分12分)在数列
(1)(2)设
(3)求数列