(本小题满分12分)椭圆的中心为坐标原点
,焦点在
轴上,焦点到相应准线的距离以及离心率均为
,直线
与
轴交于点
,与椭圆
交于相异两点
、
,且
.(1)求椭圆方程;(2)若
,求
的取值范围.
(本题12分).如图,四棱柱中,侧棱
⊥底面ABCD,AB//DC,AB⊥AD,AD=CD=1,
=AB=2,E为棱
的中点.
(Ⅰ)证明
(Ⅱ)求二面角的正弦值.
(Ⅲ)设点M在线段上,且直线AM与平面
所成角的正弦值为
,求线段AM的长.
(本题12分)如图,在三棱锥A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,动点D在线段AB上.
(1)求证:平面COD⊥平面AOB;
(2)当OD⊥AB时,求三棱锥C-OBD的体积.
(本题12分)如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求四棱锥P—ABCD的表面积S.
(本题12分)的内角
,
,
所对的边分别为
,
,
.向量
与
平行.
(Ⅰ)求;
(Ⅱ)若,
,求
的面积.
(本题10分)已知不等式的解集为
.
(1)求的值;
(2)求不等式的解集