已知离心率为的椭圆
的右焦点F是圆
的圆心,过椭圆上的动点P作圆的两条切线分别交y轴于M,N(与P点不重合)两点.
(1)求椭圆方程;
(2)求线段MN长的最大值,并求此时点P的坐标.
设
是不等式
的解集,整数
。
(Ⅰ)记"使得
成立的有序数组
"为事件
,试列举
包含的基本事件;
(Ⅱ)设
,求
的分布列及其数学期望
。
已知△ABC的三边长为有理数
(1)求证cosA是有理数;(2)对任意正整数n,求证cosnA也是有理数
某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立
(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列
(2)求生产4件甲产品所获得的利润不少于10万元的概率
不等式证明选讲
已知实数a,b≥0,求证:
参数方程与极坐标
在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值