已知离心率为的椭圆 的右焦点F是圆的圆心,过椭圆上的动点P作圆的两条切线分别交y轴于M,N(与P点不重合)两点.(1)求椭圆方程;(2)求线段MN长的最大值,并求此时点P的坐标.
已知ΔABC的三边方程是AB:,BC: CA:, (1)求∠A的大小. (2)求BC边上的高所在的直线的方程.
已知椭圆方程为,它的一个顶点为,离心率. (1)求椭圆的方程; (2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面 积的最大值.
已知函数,其中R. (1)若曲线在点处的切线方程为,求函数的解析 式; (2)当时,讨论函数的单调性.
在数列中,已知 (1)设,求证:数列是等比数列; (2)求数列的前项和
如图,四棱锥的底面是矩形,底面,为边的中点,与平面所成的角为,且。 (1)求证:平面 (2)求二面角的大小的正切值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号