(本小题满分14分)已知直线过椭圆
的右焦点
,抛物线
的焦点为椭圆
的上顶点,且直线
交椭圆
于
两点.
(1)求椭圆的方程;
(2)若直线交
轴于点
,且
,当
变化时,
的值是否为定值?若是,求出这个定值,若不是,说明由.
为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:
月收入 |
![]() |
[25,35) |
[35,45) |
![]() |
![]() |
![]() |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
8 |
8 |
5 |
2 |
1 |
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收人族”。
(Ⅰ)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?
已知:,
当<2.706时,没有充分的证据判定赞不赞成楼市限购令与收入高低有关;
当>2.706时,有90%的把握判定赞不赞成楼市限购令与收入高低有关;
当>3.841时,有95%的把握判定赞不赞成楼市限购令与收入高低有关;
当>6.635时,有99%的把握判定赞不赞成楼市限购令与收入高低有关。
非高收入族 |
高收入族 |
总计 |
|
赞成 |
|||
不赞成 |
|||
总计 |
(Ⅱ)现从月收入在[55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率。
如图,在三棱柱中,AC⊥BC,AB⊥
,
,D为AB的中点,且CD⊥
。
(Ⅰ)求证:平面⊥平面ABC;
(2)求多面体的体积。
已知a,b,c分别为△ABC三个内角A,B,C的对边,。
(Ⅰ)求B;
(Ⅱ)若,求
的值。
。
(Ⅰ)求的极值点;
(Ⅱ)当时,若方程
在
上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当时,
。
已知椭圆的中心在原点,焦点在x轴上,离心率。它有一个顶点恰好是抛物线
=4y的焦点。过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
。
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。