(本小题满分12分)
已知向量,且
(Ⅰ)求tanA的值;
(Ⅱ)求函数R)的值域.
(本小题满分14分)已知数列是以4为首项的正数数列,双曲线
的一个焦点坐标为
, 且
, 一条渐近线方程为
.
(1)求数列的通项公式;
(2) 试判断: 对一切自然数,不等式
是否恒成立?并说明理由.
(本小题满分14分)2008年奥运会在中国举行,某商场预计2008年从1日起前个月,顾客对某种奥运商品的需求总量
件与月份
的近似关系是
且
,该商品的进价
元与月份
的近似关系是
且
.
(1)写出今年第月的需求量
件与月份
的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场
今年销售该商品的月利润预计最大是多少元?
(本小题满分14分)设椭圆的左焦点为
,上顶点为
,过点
与
垂直的直线分别交椭圆
与
轴正半轴于点
,且
. ⑴求椭圆
的离心率;⑵若过
、
、
三点的圆恰好与直线
相切,求椭圆
的方程.
(本小题满分13分)如图,已知三棱柱的所有棱长都相等,且侧棱垂直于底面,由
沿棱柱侧面经过棱
到点
的最短路线长为
,设这条最短路线与
的交点为
.
(1)求三棱柱的体积;
(2)在面内是否存在过
的直线与面
平行?证明你的判断;
(3)证明:平面⊥平面
.