(本小题满分14分) 已知向量,
,函数
,
(1)求函数的最小正周期
与值域;
(2)已知,
,
分别为
内角
,
,
的对边,其中
为锐角,
,
,且
,求
,
和
的面积
.
已知等差数列的首项为
,公差为
,等比数列
的首项为
,公比为
,
.
(1)求数列与
的通项公式;
(2)设第个正方形的边长为
,求前
个正方形的面积之和
.
(注:表示
与
的最小值.)
如图,在棱长为的正方体
中,点
是棱
的中点,点
在棱
上,且满足
.
(1)求证:;
(2)在棱上确定一点
,使
、
、
、
四点共面,并求此时
的长;
(3)求平面与平面
所成二面角的余弦值.
甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是,甲、丙两人同时不能被聘用的概率是
,乙、丙两人同时能被聘用的概率为
,且三人各自能否被聘用相互独立.
(1)求乙、丙两人各自被聘用的概率;
(2)设为甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求
的分布列与均值(数学期望).
已知函数的图象经过点
.
(1)求实数的值;
(2)设,求函数
的最小正周期与单调递增区间.
设函数
(1)求不等式的解集;
(2)若关于的不等式
在
上无解,求实数
的取值范围