游客
题文

(本小题满分14分)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD = AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,

(1)求区域Ⅱ的总面积;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元. 试问当为多少时,年总收入最大?

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

过点作一条直线和分别相交于两点,试求的最大值。(其中为坐标原点)

已知椭圆ε:a>b>0),动圆,其中b<R<a. 若A是椭圆ε上的点,B是动圆上的点,且使直线AB与椭圆ε和动圆均相切,求A、B两点的距离的最大值.

在周长为定值的中,已知,且当顶点位于定点时,有最小值为.(1)建立适当的坐标系,求顶点的轨迹方程.(2)过点作直线与(1)中的曲线交于两点,求的最小值的集合.

在平面直角坐标系xoy中,给定三点,点P到直线BC的距离是该点到直线AB,AC距离的等比中项。(Ⅰ)求点P的轨迹方程;(Ⅱ)若直线L经过的内心(设为D),且与P点的轨迹恰好有3个公共点,求L的斜率k的取值范围。

已知点A和曲线上的点…、。若、…、成等差数列且公差d >0,(1). 试将d表示为n的函数关系式.(2). 若,是否存在满足条件的.若存在,求出n可取的所有值,若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号