在周长为定值的
中,已知
,且当顶点
位于定点
时,
有最小值为
.(1)建立适当的坐标系,求顶点
的轨迹方程.(2)过点
作直线与(1)中的曲线交于
、
两点,求
的最小值的集合.
已知椭圆
左、右焦点分别为F1、F2,点
,点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为
,且
,求证:直线
过定点,并求该定点的坐标.
设数列
(1)求
|
(2)求
的表达式.
如图所示的多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)
(1)求证:AE//平面DCF;
(2)当AB的长为
,
时,求二面角A—EF—C的大小.
甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.
(1)求甲答对试题数
的分布列及数学期望;
(2)求甲、乙两人至少有一人入选的概率.
在
分别是角A、B、C的对边,
,且
(1)求角B的大小;
(2)设
的最小正周期为
上的最大值和最小值.