(本小题满分16分)如图,为椭圆
:
(a>b>
)的左、右焦点,
是椭圆的两个顶点,椭圆的离心率
,△
的面积为
.若
在椭圆
上,则点
称为点
的一个“椭点”.直线
与椭圆交于
两点,
两点的“椭点”分别为
,已知以
为直径的圆经过坐标原点.
(1)求椭圆的标准方程;
(2)△的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
如图,在边长为1的正六边形ABCDEF中,其中心为点O.
(1)在正六边形ABCDEF的边上任取一点P,求满足在
上的投影大于
的概率;
(2)从A,B,C,D,E,F这六个点中随机选取两个点,记这两个点之间的距离为,求
大于等于
的概率.
已知向量,函数
图像的一条对称轴与其最近的一个对称中心的距离为
.
(1)求的解析式;
(2)在中,
分别是角A,B,C的对边,
且,求边
的值.
(本小题满分10分)选修4—5,不等式选讲
已知函数
(1) 解关于的不等式
(2)若不等式恒成立,求实数
的取值范围;
(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
(
为参数),在极坐标系(与直角坐标系
取相同的单位长度,且以原点
为极点,以
轴正半轴 为极轴)中,圆
的方程为
.
(1)求圆的直角坐标方程;
(2)设圆与直线
交于
两点,若点
坐标为
,求
.
(本小题满分12分)设函数.
(1)若函数在
处有极值,求函数
的最大值;
(2)①是否存在实数,使得关于
的不等式
在
上恒成立?若存在,
求出的取值范围;若不存在,说明理由;
②证明:不等式.