(本小题满分13分)将编号为1,2,3,4的4个小球随机放到A、B、C三个不同的小盒中,每个小盒至少放一个小球.
(Ⅰ)求编号为1, 2的小球同时放到A盒的概率;
(Ⅱ)设随机变量为放入A盒的小球的个数,求的分布列与数学期望.
已知函数是奇函数,且
.
(1) 求的表达式;(2) 设
;
记,求S的值.
已知函数的定义域为集合
,
.
(1)若,求实数a的取值范围;
(2)若全集,a=
,求
及
.
(本题12分)如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E
与直线AA1的交点。
(1)证明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值。
(本题8分)如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE(2)平面PAC平面BDE
(本题6分)已知圆台的母线长为4 cm,母线与轴的夹角为30°,上底面半径是下底面半径的,求这个圆台的侧面积.