(本小题满分14分)设函数f(x)=(x–1)2+alnx,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y–1=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)有两个极值点x1,x2且x1<x2,求证:f(x2)>–
ln2.
(本小题满分12分)某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命—和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
甲 |
80 |
81 |
93 |
72 |
88 |
75 |
83 |
84 |
乙 |
82 |
93 |
70 |
84 |
77 |
87 |
78 |
85 |
(1)用茎叶图表示这两组数据
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于个/分钟的次数为
,求
的分布列及数学期望
.
(参考数据:,
)
如图,一简单几何体的一个面内接于圆
,
分别是
的中点,
是圆
的直径,四边形
为平行四边形,且
平面
.
(1)求证:平面
;
(2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.
(本小题满分12分) 已知函数(
,
)图象的相邻两对称轴间的距离为
,若将函数
的图象向左平移
个单位后图象关于
轴对称.
(1)求使成立的
的取值范围;
(2)设,其中
是
的导函数,若
,且
,求
的值.
在三棱柱中侧棱垂直于底面,
,
,
,且三棱柱
的体积为3,则三棱柱
的外接球的表面积为()
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系,直线L的参数方程是
(t是参数)
(1)将曲线C的极坐标方程和直线L参数方程转化为普通方程;
(2)若直线L与曲线C相交于M、N两点,且,求实数m的值.